智能响应聚合物的二维相关光谱研究


 

 

    智能聚合物,又称刺激响应聚合物,是指一类具有“智能”行为的大分子体系,即当外界环境如温度、pH、光、压力、电场强度、磁场强度、离子强度或添加物浓度等改变时,大分子会做出相应的链构象或分子结构上的转变进而表现为外在的可检测到的宏观性质变化。刺激响应聚合物通常伴随着表观的相转变现象。由于这一独特的刺激响应性质,刺激响应聚合物在智能器件、药物控释、纳米材料、化学传感和生物技术等领域表现出了极为广泛的应用前景。

 

    二维相关光谱是近些年发展起来的先进光谱分析手段,由于其对相转变温度、转变温度区间、响应程度及各基团响应次序的辨析,非常适合在分子水平上探讨智能聚合物的结构变化。本课题组长期致力于利用二维相关光谱及其衍生技术-外绕相关移动窗口来探讨各种类型的智能聚合物体系如LCST/UCST型聚合物、液晶聚合物等的智能响应行为。

 

 

 

 

    比如,LCST型聚合物表现为环境温度低于LCST(低临界溶解温度)时为无规线团状态,分子链亲水。随温度升高至LCST以上,分子内/间缔合使得分子链团聚并发生亲水-疏水转变。溶液相的红外光谱可以很好地跟踪这一过程,同时借助二维相关光谱分析的研究手段,不同基团之间的相互作用及对温度变化的响应快慢可被很好地辨析出来。这非常有助于解析LCST型聚合物的温度敏感性机理。 

 

    二维相关光谱在谱图上由同步谱(synchronous)和异步谱(asynchronous)两张谱组成。同步谱是关于主对角线对称的。位于主对角线上的峰称为自动峰,自动峰总是正峰,它的强度大小代表了该处吸收峰对于外扰的敏感程度。主对角线之外的峰称为交叉峰,交叉峰可正可负,它的出现表明官能团之间存在对外扰的协同响应。交叉峰为正表示两个官能团的峰强度随外扰的变化而升高或降低的方向相同,反之则相反。异步谱是关于主对角线反对称的,它没有自动峰,只在对角线之外存在交叉峰,代表了官能团之间是否存在强的化学作用、直接相连或成对现象。异步谱可大大提高谱图的分辨率。

 

    如图中所示,尽管三个相邻谱峰有所叠加,在异步谱中它们可以被完全分辨出来,这在实际体系中尤为实用。异步谱交叉峰亦有正负之分,它的符号可用来判断分子基团的运动次序。判断规则又被称为Noda规则。简单说来,对于两个吸收峰v1 > v2, 如果同步谱与异步谱符号相同则波数较大的v1先变化,反之,符号相反则波数较小的v2先变化。例如,图中A、C两个峰强度均随外扰增加而增加,B峰强度则随外扰增加而降低。在同步谱上表现为AC相关峰为正峰,表现为同步变化,AB与BC相关峰为负峰,表现为异步变化。异步谱(因谱图反对称,只分析左上角谱峰)上,AB相关峰为负,AC相关峰为正,BC相关峰为正。根据Noda规则判断 (通过简单的列表相乘可简化该步骤),A变化最先,C次之,B最后。这一顺序与一维强度变化曲线完全一致,而二维光谱优势的地方在于它反映的是一段光谱范围所有位置的变化情况。

 

 

 

    移动窗口(moving window)本质上是基于二维同步谱的power spectra(即对角线上的切线谱)的变化。它允许我们选定一个合适的窗口大小,然后逐点移动,通过power spectra的变化情况便可以反映出所研究光谱区域随外扰的变化快慢,从而确定转变点的位置。2006年S. Morita将外扰变量也引入到了相关方程,提出了外扰相关移动窗口(perturbation correlation moving window,简称PCMW)。PCMW谱图开始有了同步与异步之分。同步谱与原来的移动窗口谱图几乎完全相同,但同时引入了符号的变化来反映一维谱图的变化方向。异步谱通过二阶导数转换,可反映出谱图变化更为精细的信息。

 

    PCMW谱图的判断规则如下:在外扰变量为增量的情况下,同步谱为正表示光谱强度增加,同步谱为负表示光谱强度减小;异步谱为正表示光谱强度变化为一凸形变化,异步谱为负表示光谱强度变化为一凹形变化。

 

    对于有明显相转变的温敏聚合物体系,光谱强度变化通常表现为S形或反S形,同步谱和异步谱反映出来的分别是相转变点和相转变区间。PCMW非常适合研究相转变体系。

 

 

 

代表性论文


  1. B. Sun, Y. Lin, P. Wu*, H. W. Siesler, A FTIR and 2D-IR Spectroscopic Study on the Microdynamics Phase Separation Mechanism of the Poly(N-isopropylacrylamide) Aqueous Solution. Macromolecules 2008, 41, 1512-1520.
  2. Shengtong Sun, and Peiyi Wu*. On the Thermally Reversible Dynamic Hydration Behavior of Oligo(ethylene glycol) Methacrylate-Based Polymers in Water. Macromolecules 2013, 46, 236-246.
  3. Lei Hou, and Peiyi Wu*. Microgels with Linear Thermosensitivity in a Wide Temperature Range. Macromolecules 2016, 49, 6095-6100.
  4. Wenhui Sun, Zesheng An*, and Peiyi Wu*. UCST or LCST? Composition-Dependent Thermoresponsive Behavior of Poly(N-acryloylglycinamide-co-diacetone Acrylamide). Macromolecules 2017, 50, 2175-2182.
  5. Shengtong Sun, and Peiyi Wu*. Role of Water/Methanol Clustering Dynamics on Thermosensitivity of Poly(N-isopropylacrylamide) from Spectral and Calorimetric Insights. Macromolecules 2010, 43, 9501-9510.
  6. Lei Hou, Kai Ma, Zesheng An*, and Peiyi Wu*. Exploring the Volume Phase Transition Behavior of POEGA- and PNIPAM-Based Core-Shell Nanogels from Infrared-Spectral Insights. Macromolecules 2014, 47, 1144-1154.
  7. Bo Zhang, Hui Tang, and Peiyi Wu*. In Depth Analysis on the Unusual Multistep Aggregation Process of Oligo(ethylene glycol) Methacrylate-Based Polymers in Water. Macromolecules 2014, 47, 4728-4737.
  8. Wenlong Li, and Peiyi Wu*. Unusual Thermal Phase Transition Behavior of an Ionic Liquid and Poly(ionic liquid) in Water with Significantly Different LCST and Dynamic Mechanism. Polym. Chem. 2014, 5, 5578-5590.
  9. Wenlong Li, and Peiyi Wu*. On the Thermodynamic Phase Behavior of Poly(N-vinylcaprolactam) Solution in the Presence of Different Ionic Liquids. Polym. Chem. 2014, 5, 761-770.
  10. Shengtong Sun, and Peiyi Wu*. Infrared Spectroscopic Insight into Hydration Behavior of Poly(N-vinylcaprolactam) in Water. J. Phys. Chem. B 2011, 115, 11609-11618.

仿生材料


 

    仿生材料是指模仿生物的各种特点或特性而研制开发的人工合成材料。受自然界中各种性能优异的生物材料的启发,本课题组致力于仿生矿化、仿生皮肤、仿生黏附和肌肉仿生等领域的研究工作,试图开发出足以媲美甚至超越生物材料性能的新材料。

 

 

    比如,我们模仿透明虾壳的结构组成(无定型碳酸钙+几丁质+蛋白质),利用聚丙烯酸交联极小的无定型碳酸钙纳米粒子,制备出了一类新型的具有可塑性、可自修复性、可拉伸性的矿物水凝胶。该水凝胶干燥后形成连续透明的坚硬块体材料,而将之浸入水中,又可恢复至水凝胶的状态。因其具有类似传统塑料的可反复加工的性质,这一材料又被我们称为“矿物塑料”(Mineral Plastics)[1]。

 

 

    我们进一步调节该矿物水凝胶的粘弹性,并利用其离子传导特性,将此矿物水凝胶应用于仿生离子皮肤的构筑,获得了可自修复并自适应物体表面形状的高灵敏人工皮肤[2]。

 

代表性论文


  1. Shengtong Sun, Li-Bo Mao, Zhouyue Lei, Shu-Hong Yu, and Helmut Cölfen*. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for “Mineral Plastics”. Angew. Chem. Int. Ed. 2016, 55, 11765-11769. (Highlighted by Giulia Pacchioni. Hydrogels: Mineral Shapeshifters. Nat. Rev. Mater. 2016, 1, 16062.
  2. Zhouyue Lei, and Peiyi Wu*. A Supramolecular Biomimetic Skin Combining a Wide Spectrum of Mechanical Properties and Multiple Sensory CapabilitiesNat. Commun. 2018, 9, 1134.
  3. Zhouyue Lei, Quankang Wang, Shengtong Sun, Wencheng Zhu, and Peiyi Wu*. A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing. Adv. Mater. 2017, 29, 1700321.
  4. Shengtong Sun, Denis Gebauer*, and Helmut Cölfen*. Alignment of Amorphous Iron Oxide Clusters: A Non-Classical Mechanism for Magnetite Formation. Angew. Chem. Int. Ed. 2017, 56, 4042-4046.
  5. Shengtong Sun, Daniel M. Chevrier, Peng Zhang, Denis Gebauer*, and Helmut Cölfen*. Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm). Angew. Chem. Int. Ed. 2016, 55, 12206-12209.
  6. Zhouyue Lei, Quankang Wang, and Peiyi Wu*. A Multifunctional Skin-Like Sensor Based on a Printable and Thermo-Responsive Hydrogel. Mater. Horiz. 2017, 4, 694-700.
  7. Shengtong Sun, Denis Gebauer, and Helmut Cölfen*. A General Strategy for Colloidal Stable Ultrasmall Amorphous Mineral Clusters in Organic Solvents. Chem. Sci. 2017, 8, 1400-1405.
  8. Zhouyue Lei, Wencheng Zhu, Shengtong Sun*, and Peiyi Wu*. MoS2-Based Dual-Responsive Flexible Anisotropic Actuators. Nanoscale 2016, 8, 18800-18807.
  9. Shengtong Sun, Denis Gebauer, and Helmut Cölfen*. A Solvothermal Method for Synthesizing Monolayer Protected Amorphous Calcium Carbonate Clusters. Chem. Commun. 2016, 52, 7036-7038.
  10. Wei Li, Shengtong Sun, Qisi Yu, and Peiyi Wu*. Controlling the Morphology of BaCO3 Aggregates by Carboxymethyl Cellulose through Polymer Induced Needle-Stacking Self-Assembly. Cryst. Growth Des. 2010, 10, 2685-2692.

二维材料的制备、改性及应用


 

   

    二维材料如石墨烯、氮化硼和过渡金属二硫属化合物等,由于其特殊的电学、光学、热学、力学、催化等物理和化学性质,近年来受到广泛关注和应用。本课题组重点关注二维材料的制备、改性以及其有机-无机纳米复合物的研究。我们利用溶剂热切割的方法,制备了一系列新型量子点,包括过渡金属二硫属化合物、氮化硼以及氮掺杂石墨碳等,研究了相关电化学催化特性以及作为生物相容的荧光探针等应用前景;利用两亲性功能高分子剥离并修饰二维片层材料,制备了新型多功能有机-无机复合材料,研究了复合物在高性能膜材料和刺激响应智能水凝胶等方面的应用,旨在探究和拓宽二维材料的应用范围,同时赋予传统高分子材料以新功能。

 

 

 

    液相剥离结合溶剂热切割的方法制备过渡金属二硫属化合物纳米片层以及荧光量子点,所制备的新型荧光量子点具有良好的生物相容性以及有效的细胞标记能力,纳米片层与量子点的复合物则具有高效析氢催化能力。这一方法开拓了二维片层材料结构调控的新思路,以及为优化材料析氢催化性能提供了新方法[1]。

 

 

   我们合成了具有温度敏感的咪唑类聚离子液体功能高分子,利用其中咪唑基团对过渡金属二硫属化合物的非共价相互作用,一步剥离并修饰了二硒化钼纳米片层,进一步交联纳米片层表面的功能高分子,可制得多功能刺激响应智能水凝胶[3]。

 

 

 

    我们对蚕丝蛋白进行水热处理,一步制得荧光碳球,具有良好的生物相容性与细胞标记能力。制备过程所用原料绿色环保,制备方法简单高效,大大拓宽了荧光碳材料的制备思路[2]。

 

代表性论文


  1. Shengjie Xu, Dian Li, and Peiyi Wu*. One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2015, 25, 1127-1136.
  2. Wei Li, Zehui Zhang, Biao Kong, Shanshan Feng, Jinxiu Wang, Lingzhi Wang, Jianping Yang, Fan Zhang, Peiyi Wu*, and Dongyuan Zhao*. Simple and Green Synthesis of Nitrogen-Doped Photoluminescent Carbonaceous Nanospheres for Bioimaging. Angew. Chem. Int. Ed. 2013, 52, 8151-8155.
  3. Zhouyue Lei, Yuanyuan Zhou, and Peiyi Wu*. Simultaneous Exfoliation and Functionalization of MoSe2 Nanosheets to Prepare "Smart" Nanocomposite Hydrogels with Tunable Dual Stimuli-Responsive Behavior. Small 2016, 12, 3112-3118.
  4. Shengjie Xu, Zhouyue Lei, and Peiyi Wu*. Facile Preparation of 3D MoS2/MoSe2 Nanosheet-Graphene Networks as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 3, 16337-16347.
  5. Shengtong Sun, and Peiyi Wu*. A One-Step Strategy for Thermal- and pH-Responsive Graphene Oxide Interpenetrating Polymer Hydrogel Networks. J. Mater. Chem. 2011, 21, 4095-4097.
  6. Zhouyue Lei, Shengjie Xu, Jiaxun Wan, and Peiyi Wu*. Facile Preparation and Multifunctional Applications of Boron Nitride Quantum Dots. Nanoscale 2015, 7, 18902-18907.
  7. Zhouyue Lei, Shengjie Xu, Jiaxun Wan, and Peiyi Wu*. Facile Synthesis of N-Rich Carbon Quantum Dots by Spontaneous Polymerization and Incision of Solvents as Efficient Bioimaging Probes and Advanced Electrocatalysts for Oxygen Reduction Reaction. Nanoscale 2016, 8, 2219-2226.
  8. Zhouyue Lei, Wencheng Zhu, Shengjie Xu, Jian Ding, Jiaxun Wan, and Peiyi Wu*. Hydrophilic MoSe2 Nanosheets as Effective Photothermal Therapy Agents and Their Application in Smart Devices. ACS Appl. Mater. Interfaces 2016, 8, 20900-20908.
  9. Xiongwei Wang, and Peiyi Wu*. Preparation of Highly Thermally Conductive Polymer Composite at Low Filler Content Via a Self-Assembly Process between Polystyrene Microspheres and Boron Nitride Nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 19934-19944..
  10. Shengtong Sun, Yewen Cao, Jiachun Feng*, and Peiyi Wu*. Click Chemistry as a Route for the Immobilization of Well-Defined Polystyrene onto Graphene Sheets. J. Mater. Chem. 2010, 20, 5605-5607.

聚合物功能膜的高性能化


 

    

    聚合物功能膜广泛用于多种领域并取得了巨大的经济和社会效益,比如海水淡化、污水处理、油水分离、气体分离膜、燃料电池隔膜等。本课题组研究方向集中于高性能聚合物功能膜的制备、表征及应用,主要研究对象为水处理聚合物分离膜和燃料电池隔膜。

 

 

 

    在水处理分离膜研究方面,我们通过加入功能性无机粒子、表面(亲水、仿生)修饰等手段对膜进行改性,可以提高膜的分离性能、亲水性、抗污染性等性能,从而获得性能优异的聚合物分离膜。例如,我们制备了具有三明治结构的二氧化硅-氧化石墨烯(SiO2-GO)粒子,然后将该SiO2-GO粒子引入到聚砜(PSf)聚合物基体中,通过相转化法制备了SiO2-GO/PSf杂化超滤膜。该SiO2-GO/PSf杂化膜在水通量、截留率、亲水性、抗污染性能等方面都具有显著优势[9]。又,我们探索出一种界面聚合新工艺(二步界面聚合法),能成功的将MWNTs负载到聚酯的功能皮层里,制得MWNTs/聚酯复合杂化纳滤膜。该工艺操作简便,只是在传统的界面聚合法前先将基膜浸入油相溶液中。实验结果表明通过该二步界面聚合法所制备MWNTs/聚酯复合杂化纳滤膜渗透性和选择性都得到了显著的提高。对于其它功能粒子,该方法同样适用,为高性能杂化复合膜的制备提供了一种有效方法[10]。

        

 

 

    随着国际能源、资源与环境之间的矛盾日益突出,燃料电池作为一种清洁、高效、安全的绿色能源展示出了广阔的市场前景,得到了广泛关注。其中,直接甲醇燃料电池(DMFC)以甲醇为直接燃料,具有燃料来源丰富、价格便宜、操作简便等众多优点而成为近年来的研究热点。作为燃料电池的关键组成----质子交换膜,其性能优劣显著影响燃料电池的工作性能。本课题组致力于通过物理共混无机、有机、无机-有机复合纳米粒子、化学修饰等手段改性Nafion膜,制备可用于直接甲醇燃料电池的高性能杂化质子交换膜。

 

   比如,我们通过共混法将硅球@磺化聚苯乙烯核壳复合纳米材料(SiO2@sPS)负载到Nafion内,可有效提升杂化PEM选择性。进一步地,我们将SiO2核刻蚀掉,在膜基体中原位引入了分散良好的、数百纳米大小的中空小球h-sPS,可进一步提升h-sPS+Nafion杂化PEM阻隔甲醇的能力此外,我们还提出了“供水/储醇”机理,为制备其他高选择性Nafion基PEM提供了新的方法和解释途径[4]。 

 

 

代表性论文


  1. Zhuang Rao, Kai Feng, Beibei Tang*, and Peiyi Wu*. Construction of Well Interconnected Metal-Organic Framework Structure for Effectively Promoting Proton Conductivity of Proton Exchange Membrane. J. Membr. Sci. 2017, 533, 160-170.
  2. Zhuang Rao, Kai Feng, Beibei Tang*, and Peiyi Wu*. Surface Decoration of Amino-Functionalized Metal–Organic Framework/Graphene Oxide Composite onto Polydopamine-Coated Membrane Substrate for Highly Efficient Heavy Metal Removal. ACS Appl. Mater. Interfaces 2017, 9, 2594-2605.
  3. Wei Jia, Beibei Tang, and Peiyi Wu*. Novel Composite Proton Exchange Membrane with Connected Long-Range Ionic Nanochannels Constructed Via Exfoliated Nafion-Boron Nitride Nanocomposite. ACS Appl. Mater. Interfaces 2017, 9, 14791-14800.
  4. Kai Feng, Beibei Tang*, and Peiyi Wu*. A "H2O Donating/Methanol Accepting" Platform for Preparation of Highly Selective Nafion-Based Proton Exchange Membranes. J. Mater. Chem. A 2015, 3, 18546-18556.
  5. Kai Feng, Lei Liu, Beibei Tang*, Nanwen Li, and Peiyi Wu*. Nafion-Initiated ATRP of 1-Vinylimidazole for Preparation of Proton Exchange Membranes. ACS Appl. Mater. Interfaces 2016, 8, 11516-11525.
  6. Kai Feng, Beibei Tang*, and Peiyi Wu*. Sulfonated Graphene Oxide-Silica for Highly Selective Nafion-Based Proton Exchange Membranes. J. Mater. Chem. A 2014, 2, 16083-16092.
  7. Kai Feng, Beibei Tang*, and Peiyi Wu*. Ammonia-Assisted Dehydrofluorination between PVDF and Nafion for Highly Selective and Low-Cost Proton Exchange Membranes: A Possible Way to Further Strengthen the Commercialization of Nafion. J. Mater. Chem. A 2015, 3, 12609-12615.
  8. Lijia Yang, Beibei Tang*, and Peiyi Wu*. Metal-Organic Framework-Graphene Oxide Composites: A Facile Method to Highly Improve the Proton Conductivity of PEMs Operated under Low Humidity. J. Mater. Chem. A 2015, 3, 15838-15842.
  9. Huiqing Wu, Beibei Tang*, and Peiyi Wu*. Development of Novel SiO2-GO Nanohybrid/Polysulfone Membrane with Enhanced Performance. J. Membr. Sci. 2014, 451, 94-102.
  10. Huiqing Wu, Beibei Tang*, and Peiyi Wu*. MWNTs/Polyester Thin Film Nanocomposite Membrane: An Approach to Overcome the Trade-Off Effect between Permeability and Selectivity. J. Phys. Chem. C 2010, 114, 16395-16400.

友情链接

分享我们